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Abstract

The impact of an isolated vortex in a compressible Keplerian disk is examined using higher order

numerical solutions of the Euler and entropy-conserving Energy equations. The vortex is

stretched by the background shear flow with longer lasting anticyclonic vortices persisting for

about 10 vortex revolutions. Simultaneously, the vortex emits transient radial waves consisting

mainly of axisymmetrical weak shock waves and a slower, nonaxisymmetric Rossby wave.

These waves may contribute to certain transient events in protoplanetary disks. The vortex

stretching and waves were found to have little long-term feedback on the baseline "standard solar

nebula" disk structure and confirm the extremely stable structure of non self-gravitating disks.

I Introduction

Light, cool disks with approximately Keplerian rotation curves are common models for

protoplanetary disks. Such gaseous disks form the background for solid body accretion and gas

dynamic processes that no doubt plays a critical role in the planet formation process

(Weidenschilling & Cuzzi 1993, Beckwith et al. 2000). Earlier work on idealized infinitely thin

disks (Lynden-Bell & Pringle 1974, Adams et al. 1989) has evolved to investigations of multi
dimensional disks with vertical and radial mean flow structure. (Klahr et al. 1999) There is now

an extensive literature base concerning the dynamical properties of such disks. Furthermore, a

number of disk-related wave systems were identified as being relevant to the solar nebula. A

survey of the field to the mid 1990s by Papaloizou & Lin 1995 emphasizes the role of the

underlying gas and seriously consider wave motion as one option for mass and momentum
transfer.

The strong synergy between geophysical and astrophysical problems was recognized decades

ago. In particular, coherent vortices as an important flow structure in protostellar disks was

advocated by v. Weizacker 1945 and examined in some detail by Adams & Watkins 1995.

Bracc0 et al. 1998, 1999 consider transport properties of vortices in barotropic fluids using

spectral-based finite-difference techniques with direct application to protoplanetary disks. They

showed that coherent vortices last long enough to form "lumpy structures" that may concentrate

solid objects and accelerate planetesimal formation. Recently, Godon & Livio 1999 extended the

work to a compressible viscous nebula by simulating discrete vortices in a viscous accretion disk

using related pseudo-spectral numerical methods. Using a polytropic gas model they find that

anticyclonic vortices last from 10 to 100 revolutions depending on the chosen viscosity. No

acoustic or shock wave motion is reported, but their equations clearly support such waves. Barge

& Sommeria 1995 investigate long-lived vortices in a disk and predict that particles may migrate
to the center of a vortex after a few vortex revolutions so the issue of vortex dynamics in the

particle accumulation process is of current interest. This paper will consider vorticies in gaseous

disks and the dual role of the underlying disk medium in propagating a variety of wave systems

throughout the disk and in simultaneously stretching the vortex by localized velocity shear.
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Sheehanet al 1999examinetheanalogybetweenmeteorologicalandcosmologicalwave
motionsin somedetail,emphasizingtherole of Rossbywaves.They arguethatvorticesand
Rossbywavesprobablyplay arole in theprotoplanetarynebula.Davis et al 2000(hereafter
DSC) further investigatetherole of vorticesandRossbywavesin a modelsolarnebulaThey
considertheevolutionof acompactregionof coherentvorticity usinganincompressibleflow
modelandthevorticity transportequations.Theyfound thatcompactvorticesinduceweak
Rossbywavesthatslowly radiateovertheentiredisk. Thevorticesultimatelydissipate,but
anticyconicvorticeswereshownto bemorepersistentthancyclonicvortices.

In thispaperweexpandtheanalysisof vorticesto compressible disks and show how a vortex,

once formed, can generate disturbances that propagate to the outer reaches of the disk. We use a

standard model of the solar nebula with a variable thickness and power-law radial variations of

the equilibrium variables. We show that discrete vortices evolve in two directions: first into a

ring structure at the radial location of the vortex and second into two separate wave packets. One

is a fast wave based on the acoustic time scale and the second a slower Rossby wave motion. The

fast wave evolves into a weak cylindrical shock that envelops the entire disk. We find that no

instability mechanisms are activated and the waves have little impact on the underlying disk

structure once they traverse the disk.

A third order in space/fourth order in time explicit numerical algorithm is developed to solve the

"column averaged" Euler and Energy equations. The equations are cast in a semi-conservative

form designed to exploit the underlying eigenvalue structure. The base flow assumes mechanical

equilibrium with assumed density, pressure, and local disk height based on standard solar nebula

models. A seeded compact vortex is chosen whose circulation is approximately the rotation rate

of Jupiter and diameter appropriate for the thin disk approximation.

With respect to the question of vortex generation in a protostellar disk Li et al 2000 derive

dispersion relations for unstable Rossby wave phenomena induced by a strong local entropy

(temperature) gradient. Li et al. 2001 simulates this instability and subsequent anticyclonic

vortex formation using numerical solutions of the Euler and energy equations. The standard solar

nebula model used in this paper does not include mean variations in entropy and, as a result, only

globally stable wave systems were found.

In section II the numerical problem is formulated based on a thin disk flow model that is initially

in mechanical equilibrium. A new derivation of the three-dimensional equilibrium flow and the

definition of the column-averaged quantities are presented in an Appendix. A semi-conservative

form of the Euler and Energy equations is described and used to develop a high-resolution flux-

biased finite difference algorithm. In Section III the vortex evolution is examined using

instantaneous and azimuthally averaged flow quantities. Finally, the relevance of this model to

some open questions regarding disk evolution is discussed.

II Problem Formulation

(a) The equilibrium flow



Theequilibrium surfacedensityandpressurefrom givendistributionson thecentral-planeare
derivedin theAppendix.Thesecolumn-averagedthermodynamicquantitiesdefineafictitious
polytrope(Hunter, 1972)that is relatedto thephysicalgasby theparametersin TableA1. The
temperatureof thedisk is convenientlydefinedfrom thecolumn-averagedperfect-gasequation
of statein termsof thecolumnpressureP andthesurfacedensityc_:P/P0= (_T)/(c_oT0).The
initial central-planethermodynamicquantitiesPo,To, n andy areall givenconstants.Herewe
will takevaluesrepresentativeof a "standardsolarnebula."Let r0be 1AU andn = -3 as
recommendedby Weidenschilling1977.Cuzzi,et al, 1993usedP0= 1.4x10.9g/cm3andTo= 280
K atr0= 1.From theperfectgasequationof state(assumingamolecularweightof 2.34g/mole),
P0= 13.83dynes/cm2.Thespecificheatratio7 is takenas 1.5andthevalueof GM appropriate
for thesolarnebula.

It is usefulcomputethedependentvariablesin astronomicalunits asthecompressibleflow
equationscontainanumberof thermodynamicquantitiesthat arenot conveniently
nondimensionalized.In addition,thekeyrole playedby the soundspeedis expressedin a more
physicalcontext.Length,mass,andtime aretakenasAU, solarmass(SM), andyears(yr).
Certainparametersbecomeextremelysimplein this system.For example,G = 4_2andM = 1.
Table1 indicatesthemajorequilibrium flow parametersat severalradial locationsusingthedata
in theAppendix.

TABLE I

Equilibrium Flow Parameters

r, AU H, AU or, SM/AU 2 P, SM/yr z T, K a, AU/yr

1 0.082 2.05E-04 7.73E-06 180 0.274

5 0.409 4.11E-05 3.09E-07 36 0.123

10 0.817 2.05E-05 7.73E-08 18 0.087

15 1.226 1.37E-05 3.44E-08 12 0.071

20 1.634 1.03E-05 1.93E-08 9 0.061

The second column is the half height of the nebula using formulas in the Appendix. The

computed wave motions should have wavelengths larger that these values to avoid three-

dimensional effects. The surface density, pressure, and temperature decrease quite rapidly. The

last column is the local sound speed which decays in this particular case as rl/2; the same decay

rate as the basic Keplerian flow so the azimuthal Mach number stays constant at about 23. The

entropy is conveniently measured by the polytropic "constant" K' = P _-r. It is initially a global

constant of about 183 in astronomical units. The ratio of gravitational (GM/r) to thermal (P/c_)

energy, which governs the disk thickness, is also constant and approximately equal to 1050.

(b) Equations of motion and solution method



5
Theequationsof motioncanbewritten in avarietyof ways.Analytically basedasymptotic
methodswereverypopularin the 1950sand60sandusedconventionalnon-conservative
equationsets.In thecontinuingsearchfor effectivenumericalmethods,theconservativeform of
theequationsseemspreferable.Unfortunately,astrophysicalproblemsincludegravitational
body-forcetermsthatupsetthesymmetryof theclassicalconservationequations.In addition,
whenexpressedin non-Cartesiancoordinatesthefully conservativeequationsbecomequite
complex.Davis2001comparesstraightforwarduseof theclassicalconservationequationsin
curvilinearcoordinatesandshowedthattheeffectof rotationcouldbesignificant.The numerical
errorwhencomputinga simpleKeplerianflow in polarcoordinateswasexaminedandtracedto
anincompatiblefinite-differencingsequence.

Thealternateform of theEuler/Energyequationis shownbelow. It is basedon thefact that
astrophysicalflow fields aredrivenby differencesbetweentwo largequantities(gravitational
andcentrifugalforces).If theserelatively largequantitiescanbeexpressedassourceterms,
incompatiblediscretizationerrorswill not occur.If Urandu0arepolarvelocities,etthetotal
energy,p thepressure,andp thedensity,then

r,ou0[r ]--, -,r ,o.01 Fro.,]
_9/ rpuou, I

Ot]rpu, OoI p.ou, /+--' "++ +rj,.(p+pu,)j
L re, k(e, + p)uoJ Lr(e, + p)u,J

puou,

- p-pu_ +p_-_-- = 0

GM

p--7-u,

(1)

where the dependent variable Q = [p, pu0, pu0, et] and the second and third vectors are fluxes.

This equation has two important properties. First, a baseline Keplerian flow is satisfied exactly

by the undifferentiated source terms. Second, the (r, 0) eigenvalues can be shown to be [u,, Ur,

u,+c, u,-c] and [u0, u0, u0+c, u0-c] where c is the local sound speed. This makes it easier to

construct wave-following algorithms in direct analogy with Cartesian systems. The physical

nature of the solar nebula is such that perturbation radial velocities are close to sonic while the

baseline azimuthal velocity is at quite a high Mach number (uric -20). This form of the Euler

equations has been presented previously (Mair et al 1988; Godon 1997) but the favorable

properties mentioned above seem not to have been utilized.

The equations are integrated in time using an explicit numerical algorithm. Higher order methods

are necessary when computing evolving waves on reasonably sized grids. A critical feature is the

need to transmit waves with minimal phase error (dispersion). The change in Q over a small time

increment is computed using a fourth-order Runge-Kutta method. Spatial derivatives are

computed with a third-order biased upwind scheme (a five-point stencil with three upwind and

one downwind mesh point). The spatial stencil was applied to a flux-split form of eq (1). The

two flux vectors can each b'e decomposed into the product of a 4x4 "Jacobian matrix" and the

vector of dependent variables Q. The Jacobian matrix, in turn, can be converted by a similarity,

transformation into a product of three 4x4 matrices consisting of a pre-matrix, a diagonal matrix,

and a post-matrix. The elements of the diagonal matrix corresponding to 0 and r are
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[uo, u o, u o + c, u o - c] and [u,, u r, ur + c, u r - c] respectively. These are the allowable propagation

speeds of the waves at each point in space-time. In the former case u0 will dominate c since the

azimuthal flow is highly supersonic. The radial velocities are approximately sonic so they will be

more sensitive to the ambient sound speed. The sign of each of these speeds is examined and

those of like sign are combined in each coordinate direction. The matrices are then recombined

into two flux vectors that reduces to the matrix equation:

where derivatives with superscript + (-) are backward (forward) biased. The most

computationally extensive part of the algorithm is computing the flux vectors which is required

at each stage of the Runge-Kutta time advancement algorithm (four times per time step for each

coordinate direction). This finite difference scheme is contrasted with other conservation-law-

based schemes aimed at precise shock wave resolution. They are usually not of high-order

accuracy away from shock waves which is the trade-off for highly resolved shock waves. The

development of higher order algorithms with precise shock resolution is the subject of intense
current research.

Appropriate boundary conditions for this class of problems is formidable. These highly sheared

flows propagate waves whose wavelength is comparable with the shear rate and commonly used

radiation boundary conditions are not applicable. Considering the lack of reliable and robust

numerical radiation boundary conditions, a second order boundary extrapolation was used. This

simple approach was appropriate for this problem. Wave reflection from the inner boundary was

not a problem. (However, disturbances seem to focus on the boundary, which is probably a

numerical artifact.). The outer boundary was taken far enough away so that reflections did not

yet interfere with the outwardly moving wave. Periodic boundary conditions were imposed in the
azimuthal direction.

Mechanical equilibrium was disturbed by a vortex placed at 4 AU. Vortex parameters were

chosen to satisfy the thin disk approximation. The vortex is distorted by the local equilibrium

flow and simultaneously transforms some of its energy into an outwardly propagating trailing

spiral. The computational domain consists of a disk ranging from 1 to 24 AU using (0, r) =

(65,300) mesh points. Additional computations were made on (125,300) and (65, 600) point

grids with no significant changes to the flow. Both cyclonic and anticyclonic vortices were used

as initial flow perturbations.

III Analysis of Vortex-induced Waves

The imposed vortex is a transient event and induces an excess velocity field upon the slightly

modified mean Keplerian flow of eq (A5). This excess flow is shown in Figure 1 along with the

initial patch of vorticity (maximum value about -1.0 yr 4) in the third quadrant. Its core diameter

is about 1 AU and peak azimuthal velocity of about. 14 AU/yr. This corresponds to a circulatic;n

(F = 2nrvo_V0,,ort) about 50 times that of Jupiter which represents a relatively strong event in the
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protoplanetarynebula.Thelocal soundspeed,anddisk thicknessat this radiusareabout3.14
AU/yr and0.3AU respectively.Thevorticity is quitecompact,but notethe largeextentof the
vortex-inducedflow includingsignificantradialvelocities.Thevortex imposesathermodynamic
(pressure,density,andtemperature)responseon thedisk. Theentropy (s = P o-r) is initially
constanteverywhereexceptfor a smallregionnearthevortex.Subsequently,the flow evolvesby
redistributingtheinitial circularvortex intoa shearedvorticity patchanda varietyof propagating
waves.Unlike theincompressiblediskconsideredby DSC,thecompressibledisk supportsa
muchmorevariedandcomplexflow structure.

Early (afew vortex revolutions)andlater (manyvortexrevolutions)flow fields areexpectedto
beassociatedwith differentphysicaleffects.Theformereventis a relatively rapidrelaxationand
redistributionof thevortexcausedby thedominatingKeplerianshearat4 AU. Waveradiation
processesareexpectedto dominatelater.A very importantparameterrelatingto wavesystemsis
thesmallerflow-inducedradialvelocity. In theremainderof thepaperwewill considerboth
effects.Theseflow eventsareillustratedusingcontourdiagramsandinstantaneousflow patterns
in secIll(a) andwith azimuthallyaveragedquantitiesin secIII(b).

(a) InstantaneousFlowPatterns

Figure2 comparesperturbedvorticity contours(scaledon theinstantaneouspeakvorticity) for

cyclonic (initial vorticity aligned with the Keplerian vorticity) and anticyclonic vorticity. The

horizontal scale represents angular position (0 < 0 < 360) and the vertical scale is the physical

radius (3 < r, AU < 10). The first panel in each part of Figure 2 corresponds to the vortex in

Figure 1. The cyclonic vortex in Figure 2(a) shears away quite rapidly (note contours at the

radius of the initial vortex) and simultaneously emits a vorticity wave that propagates radially at

the local sound speed. This axisymmetric wave is still in the field of view at 8 revs but by 12

revs it has moved beyond 10 AU. The initial vortex has almost completely dissipated by 12 revs.

In contrast, the anticyclonic vortex maintains it coherence for a much longer time span (Figure

12(b)). The vortex is still coherent, but it also emits a vorticity wave into the outer disk. The

contours in Figure 2 are drawn relative to the peak vorticity at each time (much larger in the

latter case) so the propagating waves are actually of comparable amplitudes to those in part (a).

This is clarified in Figure 3 with instantaneous radial vorticity profiles at 4 revs. The peak

anticyclonic vorticity is larger than the cyclonic vorticity. The propagating waves, on the other

hand, have similar amplitudes. These results show that the compressible disk responds in two

ways; first a local flow subject to intense velocity and secondly a wave field that is relatively
insensitive to source details.

Compressible and incompressible simulations are compared in Figure 4. Part (a) shows contour

maps for an anticyclonic incompressible vortex from DSC with similar characteristics to that of

Figure 2(b). The same contour lines are used and the stretched vorticity near the source relative

to the compressible flow is apparent. (The incompressible Rossby waves studied in DSC are very

low level and do not appear with this choice of contours.) Even after 4 revolutions the

incompressible vortex has stretched well beyond that of its compressible counterpart indicating '

that vortices in compressible flows retain coherence for longer times. The difference between the

extended vorticity fields in incompressible and compressible flow can be explained by the fact



8
thatvorticity is not aconservedquantityin the lattercase.However,thepotentialvorticity
(calledgeneralizedvortensityby Adams& Watkins 1995),definedby theratioof vorticity to
surfacedensityis a conservedquantity.Figure4(b) showscontoursof thecompressiblepotential
vorticity usingthe sameprogressionof contourvalues.It is muchmorecompactandis acloser
analogto the incompressiblevorticity. Therole of potentialvorticity in particleaccumulationin
theprotoplanetarynebulais a subjectfor futurestudy.

Theevolutionof thewaveradiationprocessesis shownin thefollowing figures.Figure5 shows
vorticity andsurfacedensitycontourssuperimposedonperturbedvelocity vectorafter 1.33
revolutions.Theperturbationvorticity hasstretchedsignificantly from its initial valueandis now
in thefourthquadrantin part (a)of thefigure.During this earlyphasetheflow is rapidly and
continuouslyshearedby thebaselineKeplerianflow. A positiveinducedradialvelocity (notethe
velocity vectorson theoutermostspiral) indicatesanoutwardmovingwave.Thetrailing spiral
movesclockwiseandoutwardunderthe influenceof thebaselineKeplerianflow andtheinduced
velocities.Theleadingedgeof thespiral is in thefirst quadrantat this instant.A coherent
overdensity(which grewfrom aninitially insignificantvalue)is visible in part (b) at thesame
locationasthevorticity. At the sametime, thereis a strongdensitywaveforming in the second
andthirdquadrant.This strongdensitywaveis theresultof nonlineardistortionof thetransient
pressureandis thefirst indicationof shockwaveformation.

Readjustmentof thedensitywavefrom an isolateddisturbanceto anaxisymmetricshockwaveis
shownin the densitycontoursof Figure6. Thesequenceillustratesthetendencyof asupersonic
Keplerianshearflow to "circularize" isolateddisturbances.Theflow evolvesasa systemof
trailing spiralsthat moveveryrapidly in theazimuthaldirection(closeto Keplerianspeed,above
Mach20)andwith aradial speedcloseto thelocal soundspeed(Mach 1).Theoutermostspiral
is aprecursorcompressionwave(light spiralsin theouterdisk) followed by apair of shock
waves.Theprecursorevolvesradially nearthe local soundspeed,but theshockwavemoves
fastersinceit is continuouslyovertakingslowermoving material.Beyondtheshockwavethe
low level precursorwaveis startingto be reflectedby theimposedboundaryconditionsat 24
AU. Behindthe shockwaveis aslowerwavesystemwith a nonsymmetricalamplitude
distribution.This wavesystemis identified asaRossbywavebasedon its similarity (generation
time andradialwavespeed)with thosecomputedin DSC.Of thesethreewaves,the main
disturbanceis confinedto thepair of shockwavessteadilymovingoutward.By 12revolutions
thewavesystemhasenvelopedalmostthewholedisk. A perspectiveview of theentiredensity
field at this time is shownin Figure7. Thetwo shockwavesarereadilyapparentalongwith the
slowerRossbywaves.Thereis alsoaresidualdensitycollarsurroundingatthe initial vortex
radius.Space-timefeaturesof thesewavesarefurther analyzedinto componentazimuthal
modes.

(b) AveragedFlow Variables

A finite Fourierseriesrepresentationis usedto defineazimuthalaverages.For example,the
meansurfacedensity(m = 0 mode)andfundamental(m = 1mode)are:
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tTo( r,t ) = -z--:Z[_( r,t, Oj )--_( r,t = 0)1
N j=l

1 x
tXl(r,t ) = -_. Z tX(r,t,Oj)e ;°'
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where N is the number of azimuthal grid points and 0j = 2_(j- 1)/N. Nonlinear evolution of the m

- 0 mode is the main pathway for radial transmission of information while the m=l mode with a

cos e dependence is useful for characterizing the slower Rossby wave component. The

axisymmetric perturbations of surface density and entropy characterize the wave field. The

quantities c_0(r, t) and s0(r, t) are shown in Figures 8 and 9 at selected times to 100 yrs. These

waves characterize the fastest signals emitted by the deforming vortex. The time scale for

information transfer is directly related to the sound speed; it takes about 12 revolutions of the

vortex at 4 AU to affect the region out to 20 AU.

The surface density in Figure 8 evolves from essentially no disturbance to a propagating density

wave in about 10 yr. The evolving wave consists of a precursor compression/expansion followed

by two sharp compressions and a decaying wave packet. The precursor wave decay is probably

governed by geometrical spreading in the cylindrical disk. The compressions evolve into shock

waves that maintain their amplitude. The stronger shock separates a weak leading shock and the

trailing wave packet. This discrete wave system is the only long-range signal emitted by the

continuously decaying vortex. A persistent nonlinear density remnant remains at 4 AU.

Differences between rapid compressions and shock waves are not easily discemable from density

profiles, but entropy changes are sensitive indicators. Figure 9 c/early shows the formation,

growth, and decay of the shock waves as measured by the entropy. The first jump appears after

20 yr. at 6 AU, grows to 60 yr., and then begins to decay. Meanwhile the second stronger shock

forms behind the first and feeds on its predecessor. The entropy signal is slightly contaminated

by a numerical artifact from the finite difference equations but does not affect the physical nature

of the evolving flow. The leading shock move at a speed ranging from. 14 AU/yr at 38.4 yrs to

. I0 AU/yr at 96 yrs, both values being greater than the local mean sound speed. The two shock

waves at 96 yrs possess temperature jumps of .003 and .873 deg K respectively, a fraction of the

• ambient temperature of approximately 12 deg K. Also note steadily falling entropy in the region

of 4-6 AU. This is where the slower Rossby waves appear and an azimuthal average smears out
the discrete nature of these disturbances.

The slower moving Rossby waves are most visible in the potential vorticity, the compressible

counterpart of the conserved vorticity. Figure 10 shows a space-time graph of the fundamental

(m = 1) component of this quantity. The shock wave positions are clearly marked along with a

variable wavelength disturbance that lags the faster moving acoustically generated waves. The

slow waves decay rapidly and are similar in nature to the Rossby waves in DSC.

The computed wave systems are summarized in Figure 11 against a background of characteristic

curves belonging to the undisturbed flow. The family of dotted characteristics correspond to the

trajectories dr/dt -- a(r) = const with their slopes proportional to the inverse sound speed. The two

solid lines estimate the shock wave path obtained by fitting a parabola to the density peaks at



10
eachindicatedtime.Theshockspeeddecreasesdueto acombinationof its propagatinginto an

inhomogeneous medium and nonlinear wave interactions. Their slope is always less than the

sound speed indicating a mild local supersonic shock speed. At larger radii the mean vorticity

rapidly decays and acoustically generated waves should be indistinguishable from classical

cylindrical weak shock waves. Considered as an inverse signaling problem, the nature of the

source (as a vortex) cannot be reconstructed from this far field generic signal. The dashed lines

in the figure trace maxima of the fundamental mode potential vorticity (a representative trace

from Figure 10 is redrawn for clarity showing the location of both waves). Their slope is always

greater than that of the background characteristics indicating a much slower phase speed. These

waves remain in the vicinity of the source disturbance about twice as long as the shocks, but

represent a weaker wave system.

Conclusions

Adams and Watkins 1995 present a comprehensive and still relevant overview of the many open

issues related to vortices in protoplanetary disks. Here we address a few of the issues using a
numerical model of the nonlinear evolution of vortices in disks. The main findings relate to

bifurcation of the vortex structure into propagating wave packets and into an axisymmetric ring

structure. In particular the potential vorticity (e.g. vorticity per unit surface mass) emerges as a

useful structure in its own right.

The main conclusions from this investigation are: (1) As a result of Keplerian shearing motion a

vortex persists for about 10 revolutions. Whether or not this is sufficient time for a critical mass

of particles to accumulate needs further investigation. Even though vortex persistence is

dependent on a number of parameters, it is unlikely that vortices of this size could last more than

decades of orbits. However, it is clear that anticyclonic vortices are definitely more robust.

(2) Another outcome of this investigation is the non-participation of the vortex in the baseline

structure of the disk. Consistent with classical notions regarding wave propagation in non

participating media, the wave moves through the disk without materially affecting it. Global

mass accretion and angular momentum transfer in protostellar disks are associated with large-

scale, widely-spaced asymmetrical spirals of matter while the wave packets computed here are

restricted to tightly-wound spirals and axisymmetric shocks.

(3) The response of disks with other equilibrium profiles may be quite different. If self-

gravitating effects are included (heavy disks, e.g. Laughlin et al 1998) vortex-induced

instabilities could "light up" the disk with strong transient signals and drive accretion and

angular momentum transfer processes via gravitational torques. Another possibility is that

thermal instabilities due to thickness gradients or radial entropy gradients could induce

significant transient events. In any event it is hard to see how any of these time-limited effects

could sustain global turbulence in the disk and be active for long epochs. The only possibility

would be an almost continuous barrage of external vortex-inducing events.
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Appendix

Mechanical Equilibrium

A polytropic gas rotates only under the influence of a central gravitator. An approximate

equilibrium solution is presented in Ruden et al. 1988 and Boss 1993. Here we will describe the

mechanical equilibrium as a general solution of the governing partial differential equation. In

spherical coordinates the three non-vanishing flow quantities are the rotational velocity V,_, the

density p and the pressure p. All three are independent of the azimuthal coordinated % The

system is closed by a polytropic equation of state p(R,0) =K p(R,0) _'where K is the polytropic

constant and 7 is the ratio of specific heats. If the pressure is eliminated, the two remaining

equations that conserve rotational and radial momentum are:

- pV_ cot 0 + K?'p r-_ 3__pp= 0
30

V 2

- P-_ + KTpr-' _-p "_ GMpORR2 -0

(A1)

Eliminate the rotational velocity to obtain a first order partial differential equation for the

quantity p'_-_:

R 2 cos0 3pr-_ + y- 1GM cos0- Rsin0 3pr-_ = 0

3R K 7 30
(A2)

The general solution of this partial differential equation for p-t-1 involves an arbitrary function of

the quantity R sin0 that is just r, the radial distance from the axis of rotation.

pr-i = f (RsinO)[1 7/-1 GM ( 1 1)] (A3)
Ky f(RsinO) Rsin0 R

Identify fir) with the (Y- 1)st-power of the arbitrary central-plane density pc(r) to complete the

solution. The pressure is easily obtained from the polytropic law and the azimuthal velocity from

the first of eq (A1). The final relation among the three quantities are:

p(R,O)= pc(r 1 y 1GM 1-7 )
act

( 1 ] r/(r-l)p(R,O)= pc(r 1 r-I GM 12 sin0 R)
Y ac,

V_(R,O)= l_mO 1+ Rsin0 dl--_gr

(A4)
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whereactis the isothermalsoundspeeddefinedby thesquareroot of pc/Pc.A reasonable
approximationto eq (A4) in cylindricalcoordinatesis to let R ~ r andexpandl/r-1/R in aTaylor
seriesaboutz = 0. Thefinal mechanicalequilibrium statefor athin disk is:

P = P_(rII- Y- I GM_I r27"a_, r 2z-2l''_'-'>j

p= Y-'2y

V_ = r L aM d log r J

(A5)

The coefficient of the term multiplying z2/r 2 proportional to the ratio of the local gravitational

potential energy GM/r to the thermal energy squared. For a typical protoplanetary nebula this

ratio is O(103) so the thermodynamic quantities decrease very rapidly from z - 0. The azimuthal

velocity, on the other hand, depends only on the radius r and is independent of z, which is a

general statement for a barotropic fluid (Lebovitz 1979, p 236). The density and pressure decay

rapidly from the midplane while the rotational velocity remains very close to the Keplerian value

throughout the flow field. (The coefficient of the corresponding term in V, is now the inverse of

the energy ratio mentioned above.) These formulas are the same as those used by other

investigators concerned with vertical equilibrium in polytropic disks.

The "column-averaged" density (G) and pressure (P) are obtained by integrating the quantities
• . . ') ,

over a disk whose half-height H is the reverse of the coeffioent of z" m the above formulas. The

equations for the surface density and surface pressure are (Hunter, 1972, p 224):

_J'n[ '"az2111_r-_)

H 2 /(y-I)

(7= p_(r) I--fly| dz = Hp_(r)f[l-x I dx=_g-Ip_(r)

-i (A6)

i[ ,P=Pc(r) l-_-rj dz=Hpc(r)_[1-x2_'(r-')dx=flHPc(r)
-H -I

where a and [3 are defined by Gamma functions that depend only on the ratio of specific heats T-

Now let the variation of the central density and pressure be simple power laws of the radial

coordinate; pc(r) = po (r/ro) m and pc(r) = Po (r/ro)". It follows that the variation of H obeys the

power law H(r) = Ho (r/ro) _ where Ho -- (27 po/po/(7-1)/GM) in and _t = (3-m+n)/2. The surface

density and pressure now have spatial variations of the form 6(r) = O_poHo (r/ro) m÷_ and P(r) =

I]po Ho (r/ro) n÷rt. This is a parametric representation relating surface density and pressure in terms

of r. Eliminating r implies the relation between _ and P:



P 8//0 n+,u_ o-,.+_,= K'O -r
n+/#
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which indicates that the surface thermodynamic quantities are also polytropes with a modified K

and a different specific heat ratio. The exponents m and n are constrained so that m y- n = 0.

In summary, mechanical equilibrium is defined by the given quantities po, P0, ro, n, GM, and T.

The derived quantities are m, c_, 13, It, F, and Ho. Table AI shows representative values of those

parameters in terms of 7 for the case when n = -3.

TABLE A 1

Values of the Equilibrium Parameters (n = -3)

y m _ 13 P F

1.2 -2.500 0.739 0.682 1.250 1.4

1.3 -2.308 0.876 0.786 1.154 1.6

1.4 -2.143 0.982 0.859 1.071 1.8

1.5 -2.000 1.067 0.914 1.000 2

1.6 -1.875 1.137 0.958 0.938 2.2
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List of Figures

1. Vortex location and induced velocity field at initial instant of time. The vortex is located at

about 135 deg on the r = 4 AU circle.

2. Contours of equal strength vorticity relative to minimum (maximum) vorticity at each time

step. Time is measured by vortex revolutions at 4 AU. (a) Initial cyclonic vortex,

perturbation vorticity > 0. (a) Initial anticyclonic vortex, perturbation vorticity < 0.

3. Vorticity profile along a ray at 163 deg showing decay of initial vorticity at 4 AU and

instantaneous location of the wave field. Shock waves have already formed in the region 6-8

AU.

4. Contours of (a) vorticity in an incompressible disk model, (b) potential vorticity in a

compressible disk model. Anticyclonic vorticity shown using the same scale as Figure 2.

5. Contours of (a) vorticity and (b) surface density after 1.37 revolutions of the initial vortex.

Rapid shearing and initial wave systems are apparent.

6. Evolution of the surface density over the entire simulated disk, 1 < r, AU < 24. (a) Initial

flow, (b) 4 revs, (c) 8 revs, (d) 12 revs.

7. Perspective view of the total surface density at 12 revs. (Note: perturbed density drawn to

twice the scale of the equilibrium density for clarity.)

8. Profiles of mean perturbation surface density _0(r, t) at selected times showing global shock

wave propagation in the disk.

9. Values of mean perturbation entropy s0(r, t) indicating discontinuities at the shock wave

position.

10. Potential vorticity profiles for the m = 1 mode showing cos 0 dependence of slower moving

Rossby waves.

11. Space-time diagram of shock wave trajectories (solid), Rossby wave tracks (dashed), and

equilibrium flow characteristic curves (dotted).
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